Text-Based User-kNN: Measuring User Similarity Based on Text Reviews
نویسندگان
چکیده
This article reports on a modification of the user-kNN algorithm that measures the similarity between users based on the similarity of text reviews, instead of ratings. We investigate the performance of text semantic similarity measures and we evaluate our text-based user-kNN approach by comparing it to a range of ratings-based approaches in a ratings prediction task. We do so by using datasets from two different domains: movies from RottenTomatoes and Audio CDs from Amazon Products. Our results show that the text-based user-kNN algorithm performs significantly better than the ratings-based approaches in terms of accuracy measured using RMSE.
منابع مشابه
Prediction of user's trustworthiness in web-based social networks via text mining
In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...
متن کاملMining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)
As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...
متن کاملHybrid Recommender System Based on Variance Item Rating
K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملFeature Extraction from Product Reviews using Feature Similarity and Polarity
Research on developing techniques to access user generated content, and specifically user reviews on different products, came in the focus of the information research community in recent past. In particular, this paper addresses the problem of extracting the features from user comments of a particular product, taking advantage of a corpus with a semistructured format: pros, cons and summary. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014